Polarization of ferroelectric films through electrolyte.

نویسندگان

  • Henrik Toss
  • Negar Sani
  • Simone Fabiano
  • Daniel T Simon
  • Robert Forchheimer
  • Magnus Berggren
چکیده

A simplified model is developed to understand the field and potential distribution through devices based on a ferroelectric film in direct contact with an electrolyte. Devices based on the ferroelectric polymer polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) were produced--in metal-ferroelectric-metal, metal-ferroelectric-dielectric-metal, and metal-ferroelectric-electrolyte-metal architectures--and used to test the model, and simulations based on the model and these fabricated devices were performed. From these simulations we find indication of progressive polarization of the films. Furthermore, the model implies that there is a relation between the separation of charge within the devices and the observed open circuit voltage. This relation is confirmed experimentally. The ability to polarize ferroelectric polymer films through aqueous electrolytes, combined with the strong correlation between the properties of the electrolyte double layer and the device potential, opens the door to a variety of new applications for ferroelectric technologies, e.g. regulation of cell culture growth and release, steering molecular self-assembly, or other large area applications requiring aqueous environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

Tuning of the depolarization field and nanodomain structure in ferroelectric thin films.

The screening efficiency of a metal-ferroelectric interface plays a critical role in determining the polarization stability and hence the functional properties of ferroelectric thin films. Imperfect screening leads to strong depolarization fields that reduce the spontaneous polarization or drive the formation of ferroelectric domains. We demonstrate that by modifying the screening at the metal-...

متن کامل

Evolution of polarization and space charges in semiconducting ferroelectrics

Related Articles High-temperature ferroelectric behaviors of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with electroactive interlayers J. Appl. Phys. 111, 064506 (2012) The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: Increased ferroelectric ordering and coexisting octahedral tilts J. Appl. Phys. 111, 064109 (2012) The improved polar...

متن کامل

Two-Dimensional Ferroelectrics

The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of 200 A and the thinnest ferroelectric films were 200 A thick, macroscopic sizes on an atomic scale. Langmuir ± Blodgett deposition of films one monolayer at a time has produced high quality ferroelectri...

متن کامل

Reversible and irreversible polarization processes in ferroelectric ceramics and thin films

In this article, the separation between reversible and irreversible polarization where the reversible polarization component is determined by capacitance–voltage curve measurements, is used to characterize ferroelectric materials. After giving a thorough foundation of the method, it is used to investigate the influence of the composition on the reversible and irreversible polarization contribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2016